INTRINSIC AND EXTRINSIC SEMI-CONDUCTORS

18. INTRINSIC AND EXTRINSIC SEMICONDUCTORS

Semiconductors are materials whose electrical conductivity lies between that of conductors and insulators.

They are classified into two main types:

1. INTRINSIC SEMICONDUCTORS

What is an Intrinsic Semiconductor?

An intrinsic semiconductor is a pure semiconductor with no impurities added.

- The number of electrons = number of holes.
- Conductivity is **entirely due to thermally excited electrons** (from valence band to conduction band).
- At absolute zero temperature, it behaves like an insulator.
- As temperature increases, conductivity increases.

Example:

- Pure Silicon (Si)
- Pure Germanium (Ge)

2. EXTRINSIC SEMICONDUCTORS

What is an Extrinsic Semiconductor?

An **extrinsic semiconductor** is a **doped semiconductor**, meaning **small amounts of impurities** are added to increase conductivity.

- Doping introduces extra charge carriers (electrons or holes).
- Two types based on the type of impurity added:
 - n-type (adds electrons)
 - p-type (adds holes)

a) n-type Semiconductor

• Doped with **pentavalent atoms** (5 valence electrons), like **Phosphorus (P)**, **Arsenic (As)**.

- Extra electrons become free carriers.
- Electrons are majority carriers, holes are minority.

Example:

• Silicon doped with Phosphorus (Si + P)

b) p-type Semiconductor

- Doped with trivalent atoms (3 valence electrons), like Boron (B), Aluminum (Al).
- Creates holes (missing electrons) in the crystal.
- Holes are majority carriers, electrons are minority.

Example:

• Silicon doped with Boron (Si + B)

19. CONDUCTIVITY IN INTRINSIC SEMICONDUCTORS

What is Conductivity?

Conductivity (σ) is the ability of a material to allow the flow of electric current.

In intrinsic semiconductors, conductivity is due to **both electrons and holes** created by thermal excitation.

How Does an Intrinsic Semiconductor Conduct?

- 1. At **absolute zero**, no electrons are in the conduction band \rightarrow **no conductivity**.
- 2. At **higher temperatures**, **thermal energy** excites some electrons from the **valence band to the conduction** band.
- 3. This leaves behind **holes** in the valence band.
- 4. Both **electrons and holes** contribute to conduction:
 - Electrons move in the conduction band.
 - Holes behave like positive charges and move in the valence band.

Conductivity Formula:

$$\sigma = e(n\mu_e + p\mu_h)$$

Where:

- σ = conductivity
- n = number of electrons in conduction band
- p = number of holes in valence band
- **e** = charge of an electron
- μ_e = mobility of electrons
- μ_h = mobility of holes

For Intrinsic Semiconductors:

Since $\mathbf{n} = \mathbf{p} = \mathbf{n}_i$ (intrinsic carrier concentration), the formula becomes:

$$\sigma = e n_i (\mu_e + \mu_h)$$

Key Points:

- Conductivity increases with temperature (more electrons are excited).
- No external doping is used only thermal energy creates charge carriers.
- Conductivity is **much lower** than metals but **higher** than insulators.

Example:

• Pure **Silicon** or **Germanium** at room temperature shows **some conductivity** due to thermally generated **electron-hole pairs**.

20. FORMATION OF P-N JUNCTION DIODE

What is a P-N Junction?

A **p-n junction** is formed when **p-type** and **n-type** semiconductors are joined together.

- p-type semiconductor has excess holes (positive charge carriers).
- n-type semiconductor has excess electrons (negative charge carriers).

How is a P-N Junction Formed?

• When the p-type and n-type materials are brought into contact, **electrons from the n-side** diffuse into the p-side.

- Similarly, holes from the p-side diffuse into the n-side.
- This diffusion causes electrons and holes to recombine near the junction, creating a region depleted of free charge carriers called the depletion region.
- The depletion region acts as a **barrier** preventing further flow of electrons and holes.
- An electric field is established across the depletion region, forming a potential barrier.

21. I-V CHARACTERISTICS OF P-N JUNCTION DIODE

Forward Bias:

- When the **positive terminal of a battery** is connected to the **p-side** and the **negative terminal** to the **n-side**, the diode is **forward biased**.
- The applied voltage **reduces the barrier potential**, allowing charge carriers to cross the junction.
- Current flows through the diode and increases exponentially with applied voltage.

Reverse Bias:

- When the **positive terminal** is connected to the **n-side** and the **negative terminal** to the **p-side**, the diode is reverse biased.
- The barrier potential increases, preventing charge carriers from crossing.
- Only a very small leakage current (reverse saturation current) flows.
- No significant current flows even with increasing reverse voltage until breakdown voltage is reached.

NOTE:

- The threshold voltage (cut-in voltage) for silicon diode is about 0.7 V.
- In forward bias, the diode acts like a closed switch.
- In reverse bias, the diode acts like an open switch until breakdown occurs.

Here's a simple and clear explanation of the Hall Effect in your preferred format:

22. HALL EFFECT

What is the Hall Effect?

The Hall Effect is the production of a **voltage difference (Hall voltage)** across an electrical conductor or semiconductor, when a **magnetic field** is applied **perpendicular** to the direction of electric current.

How Does It Happen?

- When current flows through a conductor placed in a magnetic field (perpendicular to current), the **magnetic force** pushes the moving charge carriers (electrons or holes) to one side.
- This causes **charge accumulation** on the sides of the conductor, creating a **transverse voltage** called the **Hall voltage (V_H)**.
- The voltage is **perpendicular** to both the current and the magnetic field.

Hall Voltage Formula:

$$V_{H}=rac{IB}{net}$$

Where:

- I = current through the conductor
- **B** = magnetic field strength
- **n** = charge carrier density
- **e** = charge of an electron
- t = thickness of the conductor (in direction of Hall voltage)

Significance of Hall Effect:

- It helps to determine the type of charge carriers (electrons or holes) in a material.
- It measures carrier concentration (n).
- Used to find magnetic field strength.
- Widely used in **magnetic sensors** and **Hall effect devices**.

Applications:

- Hall effect sensors for measuring magnetic fields.
- Determining carrier type and density in semiconductors.
- Used in speedometers, proximity sensors, and current sensors.

23. APPLICATIONS OF HALL EFFECT

The Hall Effect is widely used in many fields because it helps measure magnetic fields and understand material properties.

1. Magnetic Field Measurement

- Hall sensors are used to measure the strength of magnetic fields accurately.
- Used in laboratories and industrial instruments.

2. Determining Charge Carrier Type and Concentration

- Helps find whether the charge carriers in a material are electrons (n-type) or holes (p-type).
- Measures the **number of charge carriers** in semiconductors.

3. Position and Speed Sensors

- Used in automobiles for speed sensing (e.g., wheel speed sensors in ABS systems).
- Used in **proximity sensors** to detect the position of moving parts.

4. Current Sensing

- Hall effect sensors measure current flow without direct electrical contact (non-invasive).
- Used in power supplies and battery management systems.

5. Magnetic Switches and Encoders

- Used in **magnetic switches** that activate devices when a magnetic field is present.
- Employed in **rotary encoders** to measure angular position and rotation speed.

6. Applications in Electronics and Robotics

- Position sensing for **robotic arms** and moving parts.
- Used in **brushless DC motors** to detect rotor position.

24. SEMICONDUCTOR OPTOELECTRONIC DEVICES

Optoelectronic devices are semiconductor devices that **convert electrical signals into light** or **light into electrical signals**.

1. LIGHT EMITTING DIODE (LED)

What is an LED?

An LED is a **p-n junction diode** that **emits light** when current passes through it.

- When forward biased, electrons and holes recombine in the **depletion region**.
- This recombination releases energy in the form of **light (photons)** a process called **electroluminescence**.
- The color of light depends on the semiconductor material and band gap.

Applications:

• Indicator lights, displays, traffic signals, and lighting.

2. PHOTODIODE

What is a Photodiode?

A photodiode is a p-n junction diode designed to generate current when exposed to light.

- When light (photons) hits the diode, it creates electron-hole pairs.
- These charge carriers create a **photocurrent** proportional to light intensity.
- Usually operated in **reverse bias** for fast response.

Applications:

• Light sensors, optical communication, and safety equipment.

3. SOLAR CELL (PHOTOVOLTAIC CELL)

What is a Solar Cell?

A solar cell is a p-n junction device that converts sunlight directly into electrical energy.

- When sunlight strikes the solar cell, photons generate electron-hole pairs.
- These carriers are separated by the junction's electric field, creating a voltage and current.
- Solar cells are connected in arrays to form solar panels.

Applications:

• Power generation for homes, satellites, calculators, and remote devices.

